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Microbending: Its Origin and Sensitivity

Apart from the microbending loss stemming from the manu-
facturing process, there is, unfortunately, another cause of
this problem: mechanical stress applied directly on a fiber
that results in microconvexities, or microdents. This stress
might occur during the cabling process—that is, when wrap-
ping a bare fiber into protective layers, thus making a fiber
cable. Thermal stress can also result in fiber microbending.
And, of course, a user should be careful during installation
and maintenance.

To determine the fiber’s sensitivity to microbending loss
from external sources, microbending tests can be performed.
For example, one company winds the fiber, covered with
sandpaper, over a drum and applies a calibrated force to the
sandpaper. The test enables the user to compare quantita-
tively different types of optical fibers.

The critical component of an optical fiber that deter-
mines its microbending sensitivity is its coating. The tech-
nology exists today to produce excellent coatings, which
yield substantial improvement in this fiber characteristic.
(More about coatings is found in Section 7.1.)

Scattering

well developed today that microbending loss is not a major problem. Optical-fiber data shee
usually do not even specify microbending loss and so you can assume it is included in the tot
attenuation specified.

What users can do to reduce macro- and microbending loss is to be sure to handle opti
fibers with care, particularly the less-sheathed ribbon fibers, and always remember that the fib
is a very fragile medium. Mechanical and environmental stresses might change the optical prop
erties of a fiber, resulting in deterioration of the transmitting signal.

Suppose there is an imperfection in a core material, as shown in Figure 3.7. A beam propagatir
at the critical angle or less will change direction after it meets the obstacle. In other words, ligh
will be scattered. This scattering effect prevents attainment of total internal reflection at the cor
cladding boundary, resulting in a power loss since some light will pass out of the core. This is th
basic mechanism underlying scattering loss.

You might wonder what core imperfections we’re referring to and whether some mechaii
cal particles might be found inside the core. A fiber core’s diameter can be as small as units of
micrometer, so, knowing this, you can imagine how fine and clean the fiber-optic manufacturin
process must be. This is truly one of the prominent achievements of modern technology. Ther
fore, you can rest assured that absolutely no foreign particles will be found inside the perfect]
transparent core of an optical fiber. What might be found there, however, are slight variations i
the refractive index.

Even very small changes in the value of the core’s refractive index will be seen by a travelin
beam as an optical obstacle and this obstacle will change the direction of the original beam. Thisef
fect will inhibit attainment of the condition of total internal reflection at the core-cladding boundar,
as shown in Figure 3.7. The upshot, as noted above, will be scattering loss—Ilight leaving the core.

Can we overcome the problem? Only by making better optical fibers. In fact, manufac
turers today fabricate fiber of such a high quality that scattering loss is not a problem uses
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need worry about. As is the case with microbending loss, manufacturers’ optical-fiber data
sheets do not include any specifications on scattering loss. This type of loss is simply in-
cluded in the total attenuation reported. Incidentally, this type of scattering is called Rayleigh
scattering.

Note: As you have by now discerned, bending and scattering losses are caused by violation
of the condition of total internal reflection. An important point to emphasize one more time is
this: Light that initiaily meets the total-internal-reflection requirement might violate this condi-
tion when the fiber is bent or its core’s refractive index varies.

Basic mechanism You will recall from Chapter 2, that if an incoming photon has such a fre-
quency (f) that its energy (Ep = hf) is equal to the energy gap (AE) of the material, this photon
will be absorbed by the material. AE is the energy difference between two energy levels. Refer to
Figure 2.10. Remember, too, that we learned that we cannot change the energy levels of the ma-
terial, since they have been predetermined by nature. What we can do, though, to reduce or elim-
inate absorption is change either the light frequency, f, or work with another material. Remember
that changing the light frequency, f, means also changing the light wavelength, A, since Af = c,
where c is the speed of light in a vacuum.

Now imagine that light (which, you’ll recall, is a stream of photons) travels down an opti-
cal fiber and encounters a material whose energy level gap is exactly equal to the energy of these
photons. Obviously, this impact will lead to light absorption, resulting in a loss of light power.
This is the basic mechanism of the third major reason for attenuation in optical fibers.

Does this type of attenuation depend on light wavelength? It follows directly from the
above explanations that it does. In other words, there is a spectral dependence of absorption, as
shown in Figure 3.8.

We now need to ascertain whether a bulk core material, like silica, absorbs light. Optical
fiber, as we’ve seen, is a transparent strand, that is, a “nonabsorptive” material. Manufacturers
make every effort to make their bulk core material as transparent to light as possible. Absorption
properties that still remain are caused not by silica atoms but by some molecules of the hydrox-
ide anion OH™, often called high water. These molecules are incorporated in silica during the
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fabrication process and it is very hard to eliminate them. OH™ molecules have major peaks of &
sorption at 945, 1240, and 1380 nm. (See Figure 3.8.)

Transparent windows While this problem cannot be solved by eliminating the OH™ mok
cules, we can change the operating wavelength. Again look at Figure 3.8. There are three maj
regions, called transparent windows, where absorption is low. The first is located near 850
the second near 1300 nm, and the third near 1550 nm. Typically, we can expect attenuations
about 4 dB/km near 850 nm, about 0.5 dB/km near 1300 nm, and about 0.3 dB/km near 1550 nt
The latter is the most widely used wavelength today in long-distance communications.

Observe that the main course of this graph is determined by scattering loss and its depe
dence on operating wavelength.

Detailed data sheets available from manufacturers might provide a graph of spectral atter
uation similar to the one shown in Figure 3.8.

Fiber loss is the ratio of power at the output end of a fiber, P, to power launched into the fiber, /.
Loss = Fou /P, (3

where power is measured in watts.
In communications technology, we measure loss (attenuation) in decibels (dB):

Loss(dB) = ~1010g o( Py /Pn). @31

where P, and P;, are measured in watts. Since P, is always less than Py, (this is why we use
term “‘attenuation,” but not “amplification”), log,q (P,../P;,) is always negative. To make the resil
of the calculations the positive number, the negative sign is used as Formula 3.10 shows. Thisi
accepted practice in fiber-optic communications technology.

Formulas 3.9 and 3.10 can be used to compute the total attenuation of an opticai fiber. Iti
quite obvious that loss is proportional to fiber length, L, therefore, total attenuation characterizi
not only the fiber losses themselves but also the fiber length, a fact that makes this characterisi
very ambiguous. Indeed, if you know that for one specific fiber Loss; = 20 dB and for anothe
fiber Loss, = 30 dB, could you possibly predict which fiber will have the lower loss characteris
tic? Of course not, because the first fiber could be 100 meters in length and the second 100 kn
long. This is why fiber-optic communications technology uses another characteristic: attenuatio
per unit of fiber length, A.

A(dB/km) = loss (dB)/ fiber length (km) 3.1
This quantity, A (dB/km), is called attenuation and it is one of the most important charac
teristics of an optical fiber. Attenuation is the number you will see on optical-fiber data sheets

This feature is sometimes called the cable-loss factor, CLF, or the attenuation coefficient, bi
most optical-fiber manufacturers use the term “attenuation.”

Example 3.2.1

Problem:

A communications system uses an optical fiber whose attenuation, A, is 0.5 dB/km. Find the out
put light power if the input power is 1 mW and the link length is 15 km.
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3.2 Attenuation 73

Solution:
We can attack the problem using Formulas 3.10 and 3.11:

—A (dB/km) = (101og;o Poui/Py) (dB)/L (km)
10g10(Poui/Pn) (dB) = [~A(dB/km) x L(km)]/10
Pre P = 107410
P = B, % 10™4H10, (3.12)

where P, and P;, are given in watts.

For our example, Py, = 1 (mW) x 10723510 = 1 (mwW) x 107%7 = 1 (mW) x 0.178 = 0.178 mW.

Three important points can be drawn from Formula 3.12:

First, it is a key to understanding the connection between absolute attenuation and attenu-
ation in dB. Indeed, suppose P;, is 1 mW and AL = -3 dB. Then P, = P;, x 107°* = 0.5 mW,
which means that absolute attenuation equals 0.5. If AL = —10 dB, then P, = P;,/10, and so
forth. On the other hand, if you know P;, and P, you can find the loss in dB. For example, if P;,
=1 mW and P, = 0.001 mW, then AL =-30 dB, and so on.

Second, the negative sign in front of AL/10 is still further confirmation that attenuation
means decreasing power, that is, that P, is always less than P;,. The rule: Loss = 10log P,,,/P;,
is always negative but attenuation in dB/km is always positive because of the negative sign in
front of the logarithm. For example, manufacturers display attenuation on their fiber data sheets
as A £0.7 dB/km at A = 1300 nm.

Third, Formula 3.12 allows us to calculate the fiber-link length if given P;,, Py, and A.
The following formula can be easily derived from Formula 3.12:

L = (10/A) log,o(Pn/Pouw) (3.13)

Formula 3.13 allows us to calculate the maximum transmission distance imposed by attenuation,
bearing in mind that the minimum value of P, is determined by the sensitivity of the receiver.

Example 3.2.2

Problem:

Calculate the maximum transmission distance for a fiber link with an attenuation of 0.5 dB/km if
the power launched in is 1| mW and the receiver sensitivity is 50 pW.

Solution:
Just plug the numbers into Formula 3.13:

Lunax (km) = (10/A) log,o (Pa/Py) = (10/0.5) log,o (20) = 26 km

At first glance, this is not a very impressive distance, but fiber with such a level of attenuation is
designed for short- and intermediate-distance applications.

In conclusion, remember that fotal attenuation encompasses bending, scattering, and absorp-
tion losses and bending losses are usually shown separately on the optical-fiber specification sheets.
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There is a device called a power meter that allows us to measure the power of light. (For a
tailed discussion of power meters, see Section 8.5.) The result is displayed in dBm, which isi
specific unit of power in decibels when the reference power is 1 mW:

1 dBm = —101log(P,, /1 mW) (3.1%

(Some power meters enable us to display the readings both in dBm and mW; others display rea
ings in negative dBm.)

A diagram of an experimental arrangement for an attenuation measurement is shown
Figure 3.9. The procedure looks—and is—very simple: Connect a test fiber to the source and!
the power meter and record the reading.

The key point here is this: Since fiber connections to the source and to the power meteri
evitably introduce additional losses, your reading will reflect a sum of these losses and fiber#
tenuation. To exclude connection losses from your results, you need to take these measuremer
twice—with the fiber under the test and with a short piece of the same fiber serving as the refe
ence point. You then subtract the second reading from the first. In this case, you can elimini
connection losses. The precision of this method is mainly determined by two factors: how acc
rately you can reproduce connection losses and how negligible is the attenuation introduced by
short piece of fiber.

This method is known as a cut method because it can be done by simply cutting a il
under the test to get its short piece; this enables you to exclude the loss introduced by a ligh
source connector.

To measure macrobending loss, simply wrap the fiber undergoing the test several tin
with a certain bend radius and observe the difference.

When measuring atteruation in a multimode fiber, special care should be taken to use
light beam filling the entire cross-sectional area of the core (called overfilled launching) to mi
sure that all possible modes are excited. (See the next section and Section 4.4.)

It is evident that with the arrangement shown in Figure 3.9, we can measure fiber loss.]
calculate loss in dB when obtaining readings in dBm, use the following obvious formula:

Loss (dB) = P,(dBm) — P, (dBm)

Be careful about signs; always remember that you want to present the fiber loss as a positi
number. For example, if your readings are P;, = —1.0 dBm and P, = —1.5 dBm, the fiber loss!
0.5 dB. To calculate attenuation based on your measurement, measure the fiber length and
Formula 3.11.

light source | . fiber under test ’ power
(LED) meter
connector connector
a)
Figure 3.9 Experimen-
tal arrangement for ) .
measuring attenuation: light source short piece of fiber power
(a) Measuring fiber at- (LED) meter
tenuation with connec-
connector CONNECOr b

tion losses; (b) measur-

ing connection losses. b)
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3.3 INTERMODAL AND
CHROMATIC DISPERSION

Modes

From its inception, fiber-optic communications technology promised the highest possible infor-
mation-carrying capacity of any medium simply because its signal carrier—light—has the
highest frequency among all the practical carriers. But as soon as the first fiber-optic communi-
cations systems appeared, it immediately became clear that the capacity of these systems was
very far from theoretical expectations. The reason for this disappointment was modal, or inter-
modal, dispersion, which is the main subject of this section. We’ll also consider another impor-
tant phenomenon—chromatic dispersion.

What they are Numerical aperture, we have seen, is the number that characterizes the ability
of a specific optical fiber to gather light. The larger the numerical aperture, the easier it is to di-
rect light into an optical fiber (not simply to direct it, but to direct it in such a way as to save light
inside the fiber). In other words, the greater the numerical aperture, the larger the amount of light
that can be directed into and saved inside an optical fiber. It would seem, therefore, that we
would want to have a numerical aperture as large as possible. From this point of view, plastic
fiber, with an NA of 0.5192, looks better than silica fiber, whose NA is 0.2425, as calculated in
Example 3.1.4. But this is not always true. There is a stumbling block that prevents us from mak-
ing the numerical aperture larger. To understand this obstacle, we have to consider the modes in
an optical fiber.

The fact is that light can propagate inside an optical fiber only as a set of separate beams,
or rays. In other words, if we were able to look inside an optical fiber, we would see a set of
beams traveling at distinct propagating angles, ¢, ranging from zero to the critical value, oc. This
picture is shown in Figure 3.10(a).

These different beams are called modes. We distinguish modes by their propagating angles
and we use the word order to designate the specific mode. The rule is this: The smaller the
mode’s propagating angle, the lower the order of the mode. Thus, the mode traveling precisely
along the fiber’s central axis is the zero-order mode and the mode traveling at the critical propa-
gation angle is the highest order mode possible for this fiber. (The zero-order mode is also called
the fundamental mode.)

Many modes can exist within a fiber, and so a fiber having many modes is called a multi-
mode fiber.

The number of modes How many modes an optical fiber can carry depends on the optical and
geometric characteristics of a fiber. it’s reasonable to expect that the larger the core diameter, the
more light the core can accommodate and so there will be a greater number of modes. It is also
reasonable to think that the shorter the wavelength of light, the more modes a fiber can accom-
modate. As for numerical aperture, the greater it is, the more light a fiber can gather and the more
modes we would expect to see inside the fiber. We can therefore conclude that the number of
modes inside a specific fiber should be proportional to the fiber diameter, d, and the numerical
aperture, NA, and inversely proportional to the wavelength of the light used, A.

The number of modes in an optical fiber is determined by the normalized frequency para-
meter, V, which is often called, simply, the V parameter. In fact, in your career you’ll run across
many terms for this parameter, such as normalized cut-off frequency, characteristic waveguide
parameter, and others. We will just call it the “V number.”

This number is equal to:

V:%‘d\r('hf - (m)’, (3.14)
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Figure 3.10 Modes in an optical fiber: (a) Modes as different beams; (b) different beams expe
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where d is the core diameter, A is the operating wavelength, and n, and n, are refractive indexes
of the core and cladding, respectively.
You may come across Formula 3.14 in different forms as, for example,
_nd

% TNA' (3.14a)

where NA is the numerical aperture. Another popular form of this same equation is:

_ Tdn
A
where n = (n; + n,)/2 is the average refractive index and A = (n, — n,)/n is the relative refractive
index. All these forms follow from Formulas 3.5 and 3.8.

How can we calculate the number of modes? For a large V number (>20), the following
formula for a step-index fiber can be applied:

vV /2A, (3.14b)

N=V2)2 (3.15)
For a graded-index fiber (which is discussed on page 63) the formula is:
N=V?/4 (3.15a)

Formulas 3.14 and 3.15 confirm our discussion: The number of modes is directly dependent on
the core diameter and the numerical aperture and inversely dependent on the wavelength.

Example 3.3.1

Problem:
Calculate the number of modes for a graded-index optical fiber if its core diameter d = 62.5, its
numerical aperture NA = 0.275, and its operating wavelength (1) = 1300 nm.

Solution:
Applying Formula 3.14a to calculate the V number, we get:

V =(rndNA)/L =(3.14 x 62.5 x 10 x 0.275) m/1300 x 10~ m = 41.5.
Applying Formula 3.15a to calculate the number of modes, we get:
N =(V)?/4 = 431.

The actual number, N, we get from these calculations is 430.5625 but, obviously, the number of
modes can only be an integer. That is why the calculation is given as 431.

The physics and importance of modes Why do we need to know about modes in an optical
fiber? Because the light beam emerging from a light source into the fiber breaks down into a set
of modes inside the fiber. Within the fiber, total light power is carried by individual modes so that,
at the fiber output, these small portions combine, producing an output beam with its power.

One may wonder: Why does continuous light outside a fiber convert into discrete modes
inside the fiber? The answer can be found in Figures 3.10(b) and 3.10(c), where “magnifiers”
show the points of interest on a larger scale. There are three points we need to bring out here:




78

Modal
(Intermodal)
Dispersion

Chapter 3 Optical Fibers—Basics

First of all, you will recall that light is made up of electromagnetic waves. The phases
which specific waves meet the core-cladding interface are different and depend on the distanc
the waves travel. But the distance inside a fiber is determined by the propagation angle. Thus
different waves traveling within the fiber at different propagation angles will strike the core
cladding interface at different phase angles, as Figure 3.10(b) shows for two waves.

A second critical point to understand is this: A wave experiences a phase shift when it isre
flected; this shift depends on the propagation angle. This is shown in Figure 3.10(b), where th
waves traveling at propagation angles o; and oy have different phase shifts.

The third and most crucial point is that, after completing a full zigzag, wave o, strikes
core-cladding interface having the same phase as it had on the previous strike while wave g
has a new phase. In other words, wave «; reproduces itself after the whole cycle of propagatio
but wave oy, does not. All these phase shifts depend on the propagation angles of specific wave
traveling inside the fiber. Therefore, optical fiber supports only certain waves and the criterio
for their selection is the propagation angle. For a detailed discussion of this intriguing topic st
Section 4.4.

The concept of modes is a principal concern of ours because you will run across phenom:
ena associated with it many times in the course of our discussions in this book. For now, how
ever, this concept is of interest because it explains intermodal, often called modal, dispersion.

How input pulse is delivered within a fiber Let’s consider a beam propagating inside:
fiber, taking into account the mode concept. Don’t forget that we are discussing fiber-opii
communications technology; therefore, we are looking to use light to carry a communication
signal. For the most popular form of digital transmission, a light pulse represents logic 1, an
no light pulse (darkness) represents logic 0. Such light pulses, radiated by a light source, ente
a fiber, where each pulse breaks down into a set of small pulses carried by an individual mod
At the fiber output, individual pulses recombine and, since they are overlapping, the receiva
sees one long light pulse whose rising edge is from the fundamental mode and whose fallin
edge is from the critical mode. This explanation is depicted in Figure 3.11, where four mod
are shown as an example.

Pulse widening caused by the mode structure of a light beam inside the fiber is callei
modal (intermodal) dispersion. This text uses the terms intermodal and modal interchangeably.

Calculations of pulse spread To ascertain why these individual light pulses arrive at the re
ceiver end at different times, let’s do some simple calculations. A zero-order mode traveling
along the central axis needs time,

t() = L/V,

to reach the receiver end. Here, L is the link length and v = ¢/n; is the light velocity within th
core having refractive index n,, while c is the speed of light in a vacuum. The highest-order mod
propagating at the critical angle—the critical mode—needs time,

tc = L/(vcosac),

to complete its path. Reminding ourselves that cos 0. = n,/n; (see Example 3.1.2), we can deriv
the formula for pulse widening stemming from intermodal dispersion:

Atg =tc —ty = %(’%) (.16

a)

Figure 3.11 Int
an individual mo
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Figure 3.11 Intermodal (modal) dispersion: (a) Original pulse; (b) modes in an optical fiber; (c) pulses delivered by
an individual mode; (d) resulting pulse.

where SI stands for step-index fiber. Using the relative refractive index A = (n; — n,)/n, Formula
3.16 can be rewritten as:

Aty = tc —ty = (Ln,/c)A, (3.16a)

where approximation n, = n has been used.
If the precision of your calculations allows you to neglect the difference between n; and n,,
you can derive this expression in still another form:

A[Sl =1, — Iy = ,)L(I)V/A)z. (3]6[7)

<cn,

where NA is the numerical aperture. This version of the pulse-spreading formula is important be-
cause manufacturers provide you with a numerical aperture number, not with numbers n, and n,.

Example 3.3.2

Problem:
How much will a light pulse spread after traveling along 5 km of a step-index fiber whose
NA =0.275 and n; = 1.487?

Solution:
From Formula 3.16b, replacing n, with n,, we get

Aty = (L x NA®)/(2 cny) = (5 x (0.275)")/(2 x 3 x 10° x 1.487) = 423.8ns

Three things to make note of here:
(1) The fiber length is expressed in km and the speed of light in km/s.
(2) The unit used to measure pulse spreading is nanoseconds, ns (1 ns is equal to 107 s).
(3) We can assume n; ~ n, because their difference is about 0.02, which is much less compared
with 1.5—their order of value.
Since pulse spreading is proportional to fiber length, it is sometimes useful to operate in
terms of pulse spreading per unit length. If we do so using the above example, we get:

Atg /L = 84.76 ns/km
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How intermodal dispersion restricts bit rate The importance of intermodal dispersion it
pulse spreading cannot be overestimated. Let’s see why. Suppose you need to transmit informs
tion at 10 Mbit/s (megabits per second). This means you want to transmit 10 X 10° pulses every
second; in other words, the duration of each cycle is 100 ns. For simplicity’s sake, assume thi
the duration of the input pulses is negligibly short. Nevertheless, these pulses will spread due to
intermodal dispersion. For illustrative purposes, let’s refer to the numbers discussed in Exampl
3.3.2, where we found that each pulse will spread up to 84.76 ns every kilometer. Therefore, the
duration of each pulse will be 84.76 ns after the first kilometer transmission and 169.52 ns afte
the second. Figure 3.12 shows this situation.

As you can see, after the second kilometer pulses become so wide that they overlap and the
light no longer carries any information. The same is true when you try to increase bit rate ever
for short-distance transmission. Consider the problem in Example 3.3.3.

1
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‘igure 3.12 Pulse spreading after transmission: (a) Input pulses; | | >
7) pulses after 1 km transmission in Example 3.3.2; (c) pulses 0 100 169.52 200 269.52 g
fter 2 km transmission in Example 3.3.2. Bit rate: 10 Mbit/s. c)

Example 3.3.3

Problem:

Find the maximum bit rate for the fiber discussed in Example 3.3.2 if the transmission length
is 1 km.

Solution:

The solution is based on Formula 3.16a and Example 3.3.2. There are two key points to keep in
mind as we work out this problem: First, we are able to distinguish pulses until they overlap. Sec-
ondly, let Az be the width of an individual pulse. Then a 1-second interval can accommodate a cer-
tain number of these pulses before they will overlap. This number is equal to 1 second divided by
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At. If you divide this number by 1 second, you’ll find the maximum bit rate. In other words the
maximum bit rate is equal to 1/At(s). We’ve computed in Example 3.3.2: Azg; = 84.76 ns; thus, the
maximum bit rate is 1/(84.76 x 10™ ? ns) = 11.8 Mbit/s.

Obviously, we want to have a time gap between adjacent pulses to ensure their separation.
If we take 25% of the cycle gap, we come up with a lower number for the maximum bit rate. In
our example, a 25% gap results in the following: The maximum pulse width is 84.76 x 1.25 =
105.95 ns, which in turn gives 1/105.95 ns = 9.44 Mbit/s (the maximum bit rate).

Draw a picture similar to the one in Figure 3.12. It will help you visualize the phenomenon
of pulse spreading after transmission, which is the concept of intermodal dispersion.

Intermodal dispersion severely limits the bit rate of a fiber-optic link. Indeed, our examples
show that the maximum bit rate might not be more than 12 Mbit/s. This is not a very impressive
number. We certainly don’t need fiber optics to transmit information at this bit rate; a coaxial
cable can do that quite easily. In fact, this was the problem that telecommunications companies
faced when fiber optics first became a serious contender as an information-carrying medium.

The basic idea and the structure of a graded-index fiber Can the problem be overcome? To
answer this question, we first have to recall the physical reason for the problem. Within a core, the
zero-order mode travels along the central axis and the higher-order modes travel at, or less than, the
critical propagation angle. Thus, the beams travel at the same velocity but over different distances
and they arrive at the receiver end at different times. If we could arrange it so that they would arrive
simultaneously, we would solve the problem. But is that possible? In a word, yes. Recall that the
velocity of light, v, within a material is defined by its refractive index, n: v = ¢/n, where c is the
speed of light in a vacuum. Thus, we have the solution: We can design the core with different re-
fractive indexes so that the beam traveling the farthest distance does so at the highest velocity and
the beam traveling the shortest distance propagates at the slowest velocity. Such fibers are called
graded-index (GI) multimode fibers. The principle of this action is clear from Figure 3.13.

Refer to the refractive-index profile in Figure 3.13(a). Observe how the refractive-index
value varies gradually from 7, at the core center to n, at the core-cladding boundary. This is why
the fiber is called graded index. The higher-order modes move from the higher to the lower re-
fractive indexes at each point along their path. This results in a change of direction in their prop-
agation, shown as curve paths in Figure 3.13(b).

The core of a graded-index fiber can also be seen as a set of thin layers whose refractive in-
dexes change slightly from one to another so that the layer at the central axis has refractive index
n, and the layer at the cladding boundary has index n,. This is how manufacturers physically
make the fiber. The fabrication process consists of the deposition of molecular-thin layer after
layer with a given refractive index, thus assembling the core and the cladding. A change in the re-
fractive index is achieved by doping a certain number of atoms with material other than silica.
(For more details on the fabrication process, see Chapter 7.)

One can understand the principle of light propagation in graded-index fiber by considering
the behavior of light at the boundary of the two layers. Each individual interaction results in a
small change of direction of the propagation. (The definition of the term refractive index also im-
plies that it is a measure of how much a ray of light is bent when propagating from one medium
into another.) This is illustrated in Figure 3.13(c). By making these layers smaller and smaller,
we arrive at the gradually changed refractive index shown in Figure 3.13(a).

How well does a graded-index fiber reduce modal dispersion? You will recall that an input
pulse is delivered within a fiber core in fractions and each of these fractions is carried by a differ-
ent mode (Figure 3.11). The mode propagating along the centerline of a graded-index fiber—the
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shortest distance—travels at the lowest speed because it meets the highest refractive index, as Fig-
ure 3.13(a) demonstrates. The mode traveling closer to the fiber cladding—the longer distance—
propagates at the higher speed because it meets a lower refractive index. Hence, the fractions of an
input pulse delivered by the different modes arrive at the receiver end more or less simultaneously.
Therefore, intermodal dispersion will be reduced and the bit rate will be increased.

The formula for calculating pulse spreading (At) for graded-index fiber is given by [1]:

Atgr = (LN,A)/(8¢), (3.17)

where GI stands for the graded-index fiber, A is the relative index, c is the speed of light in a vac-
uum, and N, is the core group index of refraction. It follows from our definition of a graded-index
fiber that its core refractive index is variable (see Figure 3.13). However, we can summarize the
optical properties of the core as they are seen by the light propagating through a graded-index
fiber by introducing one generalized number—~N;.

Example 3.3.4

Problem:

A graded-index fiber has N, = 1.487 and A = 1.71%. For a link 5 km in length, compute pulse
spreading due to modal dispersion and determine the maximum bit rate.
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Solution:
Formula 3.17 yields:

At = (LN,A?)/(8¢) = (5 km x 1.487 x (0.0171)*) /(8 x 3 x 10°km/s) = 0.9 ns.
Again, operating with pulse spreading per km length, one can compute:

Atg /L = 0.18 ns/km

A

Compare this answer with the numbers obtained in Example 3.3.2 for step-index fiber with sim-
ilar parameters to see the much better dispersion characteristics of a graded-index fiber. Maxi-
mum bit rate is 1/At. For the graded-index fiber of 1 km, one can get 5.5 Gbit/s, which is much
better than the 11.8 Mbit/s obtained for a step-index fiber in Example 3.3.3. For a 5-km link, the
maximum bit rate equals 1.1 G bit/s. Now you can see how the concept of reducing dispersion in
a graded-index fiber works.

Two notes:
(1) Using Formula 3.8, it is easy to derive:

Atg; = (L NA*)/(32 ¢ N}), (3.17a)

where approximation n; = N; was used.

(2) Compare Atg; (Formula 3.16a) and Azg; (Formula 3.17). You can see that Az, = Atg; (A/8), again,
assuming n; = N,. Thus, a graded-index fiber has a modal dispersion A/8 times less than that of
a step-index fiber. You can verify this result using the numbers in Examples 3.3.2 and 3.3.4.

Graded-index fiber was the first solution to the modal-dispersion problem, but at a price:
cost. This was because manufacturers had to expend more effort to control the complex index pro-
file during the mass-production process. However, today this is no longer a problem and graded-
index fiber is a popular transmission medium for short- and intermediate-distance networks.

The structure of a singlemode fiber There is another, even better solution to the modal-
dispersion problem. The underlying reason for the problem is the existence of many modes that
deliver the same light pulse. So researchers asked themselves, “Why not limit the light beam in-
side the core to only one mode?” Doing so, they reasoned, would eliminate the problem com-
pletely. The result: advent of the singlemode fiber.

But just how was this accomplished? Refer again to Formulas 3.14, 3.15, and 3.16. They
show that the number of modes is directly dependent on the core diameter, d, and the difference
between refractive indexes #; and n,. Hence, the simplest way to restrict the number of modes
propagating inside the core to just one is to reduce the core diameter and relative refractive index.
This approach is illustrated in Figure 3.14.

Pay attention to the core diameter, ¢, and the relative index, A, of a singlemode fiber; typically,
d and A are as small as 8.3 pm and 0.37%, respectively. Compare these numbers with 62.5 um and
almost 2% of a graded-index fiber and you will see how one can make a fiber carry only one mode.

A word of caution: Don’t try to insert N = 1, where N is the number of modes, into For-
mula 3.15 to obtain the critical V number. Remember, Formulas 3.14 and 3.15 work only for a
large (V > 20) number of modes. A real singlemode condition is:

V £2.405 (3.18)

This condition was obtained from considerations that will be discussed in Chapter 6.
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Review of the modal-dispersion problem To review the concept of dispersion for all thret
types of optical fiber, see Figure 3.15.

It is therefore clear that the singlemode fiber affords the best solution to the modal-dispersion
problem. The drawback is that it is the most expensive fiber to manufacture and the most difficul
to maintain, largely because of the difficulty in maintaining an accurate core size. Indeed, the
core size of a singlemode fiber may vary from 4 to 11 pm. You can imagine how difficult it isto
maintain this size with accuracy, yet avoid microbending and scattering problems during the
mass-production process. What’s more, a singlemode fiber is more prone to macro- and mi
crobending losses and many other problems during installation and operation. However, the sin-
glemode fiber is now the most popular type of link, particularly for long-distance communica-
tions, and it will surely penetrate other sectors of telecommunications. We will discuss this
subject in more detail in Chapters 5 and 6.

What it is Modal dispersion is not the only impediment to fiber bandwidth, or bit rate. Another
type of dispersion, chromatic dispersion, also contributes to this drawback. The word chromatic
is associated with colors, of course. You’ll recall that the basic mechanism of dispersion involves
different light beams carrying light pulses. The beams arrive at the receiver end at different
times, causing the output light pulses to spread. In the case of modal dispersion, these different
beams are different modes. But even within a single mode we might have the same problem if
this mode were composed of light comprising different colors. Obviously, color is no more than
an image and, in reality, we have to talk about wavelength.

Let’s consider the zero-order mode, which travels precisely along the fiber’s central axis.
This beam is composed of light having several wavelengths simply because there is no source in
nature that can radiate a single wavelength. And the key point to note here is that refractive index
depends on wavelength; thus, n = n (X). In other words, for each specific wavelength, the refrac-
tive index is a specific—and different—number. You’ll recall that the velocity of light, v, within
a material is v = ¢/n, where c is the speed of light in a vacuum; therefore, light of different wave-
lengths travels along the fiber at different velocities. Even if all of these beams propagate along
the same path, they will arrive at the receiver end at different times. This results in the spreading
of the output light pulse—chromatic dispersion.

Chromatic dispersion plays the major role in limiting the bandwidth of a singlemode fiber,
since modal dispersion is not a consideration here. (We will consider this in detail in Chapters
5 and 6.) This type of dispersion is important, too, for multimode fibers even though modal dis-
persion is the major factor limiting multimode-fiber bandwidth.

Input-
light pulse

Input-
light pulse

Input-
light puls

Figure 3.15
mode fiber; ((
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Figure 3.15 Dispersion in three types of optical fiber: (a) Step-index multimode fiber; (b) graded-index multi-
mode fiber; (c) step-index singlemode fiber.

Calculating pulse spreading caused by chromatic dispersion Pulse spreading caused by
chromatic dispersion can be calculated as follows:

Alpeom = D(A)L AR, (3.19)

where D(A) is the chromatic-dispersion parameter measured in picoseconds (ps) per nanometer
(nm) and kilometer (km); thus, we have ps/nm - km; L is the fiber length in km and AA is the spec-
tral width of a light source in nm, the characteristic of how many wavelengths this source radiates.
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The chromatic-dispersion parameter, D()A), is zero at the specific wavelength called
zero-dispersion wavelength. The graph of D(A) as a function of \ is shown in Figure 3.16.

Manufacturers specify the chromatic-dispersion parameter for multimode fibers either b
giving its value or by giving the formula:

4
D) = %[x = %] @

where S, is the zero-dispersion slope in ps/(nm2 - km), Aq is the zero-dispersion wavelength, ai
A is the operating wavelength.

Example 3.3.5

Problem:

What is the chromatic dispersion for a graded-index fiber if S, = 0.097 ps/(nm” - km), Ao = 1343
and A = 1300 nm?

Solution:
Inserting the numbers into Formula 3.20, one gets:

D(X) = —4.38 ps/(nm - km)

The minus sign comes from the formula and indicates that pulse spreading decreases as wav
length increases. For practical calculations, we can neglect this negative sign. This result tellsu
that the pulse spreading of this specific fiber is 4.38 ps (pico means 10™'%) per nm of wavelengt
radiated by a light source and per km of fiber length.

If we use an LED whose AA = 50 nm, we can calculate:

At hrom /L = 219 ps/km = 0.22 ns/km

3.4 BIT RATE

Bit Rate and
Bandwidth
Defined
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This number is the same order of value as the number 0.18 ns/km that we calculated for the
modal dispersion of the same fiber. (See Example 3.3.4).

Total puise spreading caused by modal and chromatic dispersion Total pulse spreading
from both types of dispersion is calculated using the following formula:

NI = ’
Arlmul = V (A[r;mdul + A’Jhmm) (3.21 )

where Af,,.q4.1 1S the pulse spreading caused by modal dispersion and At 1S the pulse spread-
ing that results from chromatic dispersion.

3.4 BIT RATE AND BANDWIDTH

Bit Rate and
Bandwidth
Defined

Modal dispersion in optical fibers causes a significant restriction of bit rate. In response, two dif-
ferent types of optical fibers—graded-index multimode and singlemode—were developed to fa-
cilitate the problem. This is also true for chromatic dispersion. The result of these efforts is the va-
riety of types and specifications of optical fibers that are available today designed specifically to
satisfy a range of customer requirements. The major factor in these requirements is the informa-
tion-carrying capacity of a link or network that can be characterized by bit rate or bandwidth.
What these characteristics are and how we can calculate and use them are the topic of this section.

Bit rate (some say ‘“data rate”) is the number of bits that can be transmitted per second over a
channel. It is measured in bit/s. It is the direct measure of information-carrying capacity of a
communications link or network for digital transmission. This is why it is also called the “infor-
mation-transmission rate.” Bandwidth is the frequency range within which a signal can be trans-
mitted without significant deterioration. It is measured in Hertz. It is the information-carrying
capacity characteristic of a communications channel used for analog transmission. These two
characteristics, then, are obviously quite different. Bit rate—for digital transmission—and band-
width—for analog transmission—are shown in Figure 3.17.

There is a difference between electrical bandwidth and optical bandwidth, which is dis-
cussed in Section 4.6.

What is the relationship between bit rate, BR, and bandwidth, BW? The simplest approach
is to assume that the number of bits per second, bit/s, and the number of cycles per second, Hz,
are the same; hence, BW = BR.

You often will find another relationship between bandwidth, BW, and bit rate, BR:

BW = BR)2 (3.22)

This stems from the following consideration: Let’s take the worst-case scenario, that is, when
digital transmission is the sequence 1-0-1-0-1. . . . If we represent pulse waveform by sine
waveform, we find that one period of sine covers two bits. This is shown in Figure 3.17(c). It is
quite obvious that the bit rate is twice as high as the frequency, which results in Formula 3.22.

Which relationship—BW = BR or BW = BR/2—we must use depends on the line codes. For
instance, Figure 3.17c shows the non-return-to-zero (NRZ) format, which is the simplest line
code. Here we use Formula 3.22. There are many other line codes for which the relationship be-
tween BW and BR is different. In general, one can transmit several bits per second per hertz of
a channel bandwidth (bit/s/Hz) by using various forms of modulations. We will treat this topic
in later chapters, but for the remainder of this discussion we will concern ourselves solely with
BW = BR. Since fiber-optic communications technology uses the terms bandwidth and bit rate
interchangeably, we will follow this pattern.




3.1 HOW OPTICAL FIBERS
CONDUCT LIGHT

Imagine yourself a researcher working about thirty years ago. Your project: Find a way tot
mit a light signal for communications. The concept of optical fibers—thin, transparent, fles
strands—is already known but any attempts to use them for communications have failed beca
the signal completely disappears after several feet of transmission. So herein lies our probis
We have to determine the conditions needed to transmit light through an optical fiber and res
how these conditions can be effected in a practical manner.

Step-Index Total Internal reflection: refractive Indexes of a core and cladding An optical fiberij

Fiber: The thin, transparent, flexible strand that consists of a core surrounded by cladding. Figure 3.1 sho 8
Basic this structure and the typical dimensions of optical-fiber components. —
Structure The core and the cladding of an optical fiber are made from the same material—a typf

glass called silica—and they differ only in their refractive indexes. You recall that the refr:
index is the number showing the optical property of a material, that is, how strongly the m:
resists the transmission of light. (See Table 2.1.) The definition of a refractive index, n, is g1
by Formula 2.2, rewritten here:

v=c¢/n,

where v is the velocity of light inside a material having a refractive index of n, and c is the spf
of light in a vacuum. The core has the refractive index n,, and the cladding has a different refn
tive index, n,; thus, different optical properties make up the core and cladding of an optical
If you look at the graph depicting how abruptly the refractive index changes across the fiber (Fi
ure 3.1[a]), you will immediately understand why this structure is called a step-index fiber.

e
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Figure 3.1 Basic structure of a step-index optical fiber: (a) Refractive-index profile; (b) cross section of
an optical fiber—front view; (c) cross section of an optical fiber—right-side view.
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The structure is made by applying a layer of cladding over the core. The difference in re-
fractive indexes can be achieved by doping silica with different dopants. Because of the way a re-
fractive index is changed, we can show the strict boundary—an optical boundary—between the
core and cladding.

To complete this discussion of the basic makeup of optical fiber, it is necessary to stress
that a third layer—a coating—is applied over the cladding to protect the entire structure. The
coating is made of a different material from that of the core or cladding. The coating serves, then,
as the first line of defense for a very fragile core-cladding structure. Without it, installers and
users couldn’t work with optical fibers.

To sum up, then, an optical fiber is always manufactured in three layers: core, cladding,
and coating. This combination forms a bare fiber.

The question you want to have answered at this point is which layer—core or cladding—has
the greater refractive index. The answer can be found in the basic understanding of what an opti-
cal fiber is designed for: to be a light conduit, that is, a flexible, transparent strand that transmits
light with—ideally—no attenuation. Hence, as we saw in Chapter 2, we must make use of the
concept of total internal reflection (see Figures 2.5, 2.6, and 2.7) to save light inside the core of an
optical fiber. Therefore, to achieve total internal reflection at the core-cladding boundary, the
core’s refractive index, n;, must be greater than the cladding’s index, n,. Under this condition,
light can travel inside the core not only along its central pathway but also at various angles to this
centerline, without leaving the core. Now we have created a light conduit. This conduit—an
optical fiber—will save light inside the core even if it is bent. Figure 3.2 shows both situations (By
the way, it is commonplace to hear those in the field say that “light bounces inside the core.”)

Example 3.1.1

Problem:
a. The refractive index of a core is n; = 1.48 and the refractive index of a cladding is n; =
1.46. Under what condition will light be trapped inside the core?
b. Find this condition for a plastic optical fiber where n, = 1.495 and n, = 1.402.

Solution:
a. This condition is total internal reflection. To attain total internal refiection, we have to direct
a light ray to the core-cladding boundary at the critical incident angle (see Figure 2.5). What
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Figure 3.2 Light propagation inside an optical fiber:
(a) Straight fiber; (b) bent fiber. b)
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is this angle? We find it by using Snell’s law (Formula 2.3): n, sin ©, = n, sin ©,. The crifg
angle is reached when ©, = 90° (again, see Figure 2.5); hence, n, sin ©,c = n, and

sin ©,c = ny/n, .
Therefore, ©,c = sin™" (n,/n;) = sin™' (0.9865) = 80.57°.
b. Besides silica (glass) optical fiber—the most popular type in today’s deployed system;

an optical fiber made from plastic also exists. Let us repeat the same type of calculation
plastic optical fiber where n; = 1.495 and n, = 1.402:

©,c =sin""(1.402/1.495) = sin~'(0.9378) = 69.68°

Observe the difference between the two critical incident angles: Where does this differe
come from?

The above example also helps us remember this important fact: n .. (n,) is always gres
than n.g44ing (2). Indeed, we found that sin ©;¢ = ny/ny; thus, ny cannot be less than 7, as|
property of sine function dictates.

Total Internal reflection: critical incldent angle and critical propagation angle 1ltisi
portant to point out at this juncture that two key terms often confuse newcomers to this field:
ical incident angle and critical propagation angle. You must distinguish between them. The cri
cal propagation angle, 0.c, is the angle the beam makes with the centerline of the optical fiber|
is very often referred to, in fiber optics parlance, as the “critical angle.”) The critical incide
angle, ©,c, is the angle the beam makes with the line perpendicular to the optical boundary
tween the core and the cladding (again, see Figure 2.5). Both angles are shown in Figure 3.3.

It is clear from right triangle A-B-C, Figure 3.3, that ¢.c = 90° — ©, . In Example 3.1.1a
found that @, = 80.57°; hence, a.c = 9.43°.



Figure 3.3

Critical incident
angle, ©,¢, and
critical propa-
gation angle, oc.

©,. The critical
and

ed systems—
calculation for

this difference

ptical fiber. (It
itical incident
boundary be-

3.1 How Optical Fibers Conduct Light - 63

n; cladding

nj core

n cladding <

Why is the critical propagation angle, a.c, so important? Suppose a beam travels within
this optical fiber at ot = 10° > o.c. Hence, ©, = 80° < ©,¢, which means that the condition of total
internal reflection has been violated. Therefore, the incident beam will divide in two: a reflected
beam, which will be saved, and a refracted beam, which will be lost. This beam, which is at
o > Ol with the center axis, is shown in Figure 3.3 as a dotted line. (Refer again to Figure 2.4.)
Keep in mind that a beam strikes the core-cladding interface millions and millions of times while
traveling through the fiber; therefore, if even a microscopic portion of the beam is lost every time
it hits this boundary because of refraction, the beam will be completely lost after traveling only a
short distance. This is what is meant when we speak of unacceptably high attenuation. Thus,
total internal reflection is the condition necessary for using optical fiber for the purpose of com-
munication. The critical propagation angle, o.c, represents the requirement to achieve this condi-
tion. In conclusion, then, to save light inside an optical fiber, it is necessary to direct rays at this
critical propagation angle—or even at a lesser angle.

From here on, we can forget about the critical incident angle, ©,, since it does not apply
to fiber-optic technology. We are only interested in knowing the critical propagation angle, o.c,
since this angle dictates how we must direct the light inside the optical fiber. We must never lose
sight of the crucial role this angle plays. It is a supplement to the critical incident angle, ©,¢, and
therefore represents the condition necessary for achieving total internal reflection.

Example 3.1.2

Problem:

a. The refractive indexes of the core and the cladding of a silica fiber are 1.48 and 1.46, respec-
tively. What is the critical propagation angle?
b. Find this angle for a plastic optical fiber (rn; = 1.495 and n, = 1.402).

Solution:

a. First, let’s derive the formula. In Example 3.1.1a we found that sin ©,c = ny/n;. Since
O¢ = 90° — Oy, sin O, = cos O.¢; hence, cos 0.c = ny/n;. Thus, one can derive: sin O.c =

J(1-cos’ac) = 1/(1 - (nz/nl)z). Hence,
O = sin™ 1}(1 - (nz/nl)z)

Now let’s plug in the numbers:
ac =sin {1- (1.46/1.48)") = 9.43°

This result is clear from Example 3.1.1a, since a¢c = 90° — O;c.
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b. Now calculate the critical propagation angle for a plastic optical fiber:

i
-

ac =sin™ (1 (1.402/1.495)") = 20.32°

At this point, it is imperative to bring into our discussion a very important formula:
critical angle of propagation, O.c, is determined by only two refractive indexes, ny (Rgor) ands
(ncladding): e

2
. n
O =sin™! 1—(—2)

n

2t B SEED

It is important to underscore the logic that led us to this formula: To save light inside
strand of fiber, we need to have it strike the core-cladding boundary at the critical incident ang 1
O,c, or above it, in order to provide total reflection of this light; to make light fall at or abo§
that angle, we have to direct it so that it is at or below the critical propagation angle, a.c, withnf
spect to the centerline of the fiber, as we’ve already seen. 5
N
Acceptance angle The next question that arises is, how can we direct this beam so that
does indeed fall at or below the critical propagation angle? The light, of course, must comgs:
from some source, such as an LED or an LD. This source is outside the fiber; therefore, we haw;
to direct it into the fiber. Figure 3.4 shows how light radiated by a light source is coupled to s
optical fiber. 1

At the gap-fiber interface, the beam at angle ©, is the incident beam and the beam at anglg
ac is the launched one, which is the refracted beam with respett to gap-core interface (the vf
flected beam is not shown here). It will help you to understand this explanation if you look #f
Figure 3.4. The formal relationship between ©, and 0.c can be derived using Snell’s law. Frof -jves -
Figure 3.4 one can find: ! :

n, sin®, = n, sinoc (33 j.

n, core

n, cladding <

Light source

Figure 3.4 Launching light into an optical fiber.

Gap (n,) Optical fiber




light inside a
incident angle,
all at or above
le, oc, with re-

beam so that it
, must come
fore, we have
coupled to an

beam at angle
terface (the re-
if you look at
1I's law. From

3.3)

3.1 How Optical Flbers Conduct Light 65

If the gap between a light source and a fiber is air, then n, is very close to 1 (n, = 1.0003).
Therefore,

sin®, = n, sin0¢ (3.3a)

Formula 3.3, in a sense, states the following principle: To save light inside a fiber (to provide
total internal reflection, that is) all rays must propagate at critical angle O.c or less. In order for
us to maintain the light inside the fiber at this angle, we have to direct it from outside the fiber
(from the light source, remember) at angle ©, or less.

It’s clear from Figure 3.4 that angle ©, is a spatial angle. Light will be saved inside the
fiber if it comes from a light source bounded by the cone 20,. This is why we call angle 20, an
acceptance angle. (Sometimes you might meet an acceptance angle defined simply as ©,, with-
out the coefficient 2.)

The dotted line in Figure 3.4 indicates a ray that comes in at an angle exceeding the accep-
tance angle, ©,, outside the fiber. It is obvious the ray will travel inside the fiber at an angle ex-
ceeding the critical propagation angle, o.c. This will result in the partial refraction of the ray. In
other words, if a ray is not within the acceptance cone defined by 20,, it will be lost while trav-
eling inside the fiber. Simply put, exceeding acceptance angle 28, is just beyond the requirement
for having total internal reflection inside a fiber.

Example 3.1.3

Problem:

a. What is the acceptance angle for the fiber when n; = 1.48 and n, = 1.46?
b. What is the acceptance angle for the plastic optical fiber?

Solution:

a. From Snell’s law, #, sin ©, = n, sin o.¢. For air, n, = 1.00. From Example 3.1.2, the critical
propagation angle o.c = 9.43°; hence, sin ©, = 1.48 sin 9.43° = 0.2425. One half of accep-
tance angle ©, = sin™' 0.2425 = 14.033°. Therefore, the acceptance angle is 20, = 28.07°.

b. ©, =sin"' (1.495 sin 20.32°) = sin —1(0.5192) = 31.27°
Thus, the acceptance angle is 20, = 62.54°.

Observe the difference in values of the acceptance angles for these two fibers.

All these considerations serve only to better explain how we can save light inside an opti-
cal fiber. Physically, we have two components of a system that have to be connected: an optical
fiber and a light source (LED or D). We don’t see any angles—either a critical propagation
angle or an acceptance angle—and the only thing that we can do is direct light from the source
into the fiber. This is why fiber-optic communications technology does not operate with any an-
gles but, instead, integrates all these factors into one characteristic: numerical aperture (NA).

Numerical aperture Numerical aperture, NA, is:
NA =sin@®, 3.4)

This definition underscores the meaning of the numerical aperture. To compute the numbers,
however, it’s better to use another form of this expression, which can be derived as follows:
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NA =sin®, flli:
sin®, = n, sino¢ and sjpnoc = /(1 = (n2/m )2) (see Formula 3.2); hence, : ' 1

NA =n;sintc = "nﬂl—("z/”l)z) = \/(”1)2 - (m)?

This is the formula most often used:

NA = /(n )2 —(m )2

Example 3.1.4

Problem:

a. What is the numerical aperture of silica fiber with n, = 1.48 and n, = 1.46?
b. What is the numerical aperture of plastic fiber where n; = 1.495 and n, = 1.402?

Solutlon:
a. If we plug the numbers into Formula 3.5, we get: NA = +/(1.48)* — ( 1.46)7 = 0.2425. W
can verify our result by using Formula 3.4: NA = sin ©,. We have found in Example 3. '
that sin ©, = n; sin o.c = 0.2425; hence, NA = 0.2425.
b. NA= +/(1.495)> — (1.402) = 0.5192.
Verify the answer: NA = sin 31.27° =0.5192.

Observe the difference in the values of NA for these two fibers.

Have you noticed that all the formulas we’ve used in this chapter depend on only two v
ables—n, and n,? This is so because the formulas are mathematical forms of the same basici
total internal reflection for light traveling inside an optical fiber. :

We can best summarize our discussion by this simple flow diagram: ©,c — ¢ - §
— NA. What it shows is that fiber-optic communications technology makes use of nume
aperture, NA, which describes the ability of an optical fiber to gather light from a sourcea
then the ability to preserve, or save, this light inside the fiber because of total internal reflecti

The formula expressing this statement thus becomes:

NA =sin®, = ()’ — ()’ (3.4) and (8

From here on, all we need to know is the numerical aperture, NA, which is the only num
that you will find in the optical-fiber data sheets. It is essential that you remember the meaning
this number. It represents the condition of total internal reflection inside the optical fiber, a o
dition that is absolutely necessary if we want to use optical fiber for communications.

Would we ever want to change the NA? Remember, NA characterizes the fiber’s ability
gather light from a source. Thus, the answer is yes, because for different applications it might
necessary to use fibers with different NAs. It would seem that if we wanted to change the
(Formula 3.5), we would have to change either n; (the core refractive index) or n; (the claddi
refractive index). But let’s take a closer look at Formula 3.5.

Fiber-optic communications technology operates not with the refractive indexes of §
core and the cladding themselves but with their difference, An. The above discussion mads



3.2 Attenuation 67

clear, we trust, why the difference, An, not the values of n, and n,, is important. We define the
difference, An, as:

)); hence,
An = n—n, (36)
Note that this value is always positive. It is very common to use the relative difference of the re-
Jractive indexes, A, often called the relative index, which is defined as follows:
3.5)
A =(m —ny)/n, 3.7
where n, the average refractive index, equals (n, + n,)/2.. You can find a formula similar to (3.7)
with n; or n, in the denominator. The numbers you will calculate with these variations change
very slightly because, in reality, n, is very close to n,.
467 Using this quantity, we can introduce another formula for numerical aperture, NA.
= i,402? This is the simple derivation: NA =+(m)> = (m)? = ((n = 1) (m + 1)) = [(An) (2n) =

J((An/n) (2n)?). Thus, we arrive at this formula:

L NA =n.J(2A) (3.8)
46)° = 0.2425. We ves)

in Example 3.1.3

This formula underscores the following: n; and n, are not important in themselves but only in
their average and relative difference. Thus, to change NA, we need to vary n and An; this is what
manufacturers really do. By varying these two parameters, manufacturers are able to change NA
over a relatively wide range (from 0.1 to 0.3 for a silica fiber).

Can we measure NA? Not directly. We have to first measure the power of light immediately
after it is radiated by an LED. Then we make a second measurement by placing a short piece of
fiber between an LED and a power meter. The first measurement gives us the power P, the sec-
ond measurement, the power P;,. Now the numerical aperture can be estimated by the simple for-

on only two vari- mula NA = /P, /Fy. (See Section 9.1.)

e same basic idea: I

0> ac > 0, §
M;S’ of numerical I 3.2 ATTENUATION
m a source and

internal reflection, Assume that you measure light power before it is directed into an optical fiber and then measure

it again as it emerges from the fiber. Would you expect to get the same numbers? Of course not.
This is because we understand intuitively that the power coming out of the fiber should be less
than the power entering it. But apart from an “intuitive” understanding, we want to have a scien-
tific explanation for this phenomenon. And it is simply this: Every transmission line introduces
some loss of signal power. This is the phenomenon of “attenuation.” In fiber-optic communica-
tions technology, attenuation is the decrease in light power during light propagation along an
optical fiber.

From this definition, light loss caused by violation of the condition of total internal reflec-
tion when launching light into a fiber (see Figures 3.3 and 3.4) is supposed to be included in the

(3.4) and (3.5) 5

is the only number
r the meaning of
tical fiber, a con- §&
ations.

fiber’s ability to total attenuation within the fiber. But, practically speaking, fiber-optic communications technol-
tions it might be ogy never considers this loss as a component of total attenuation because, without total internal
to change the NA reflection, optical fiber simply doesn’t work as a communications conduit. As emphasized sev-

eral times in Section 3.1, total internal reflection is an absolutely necessary condition for using
optical fiber in communications systems. As an analogy, consider the situation where people ask
you about your health. Nobody ever asks whether or not you can breathe, do they? Yet breathing
is a necessary condition for living. Therefore, the point to keep clearly in mind as you read what

n, (the cladding

e indexes of the
iscussion made it
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Bending
Losses

Figure 3.5 Bend-
ing loss.
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follows is this: When light is coupled to an optical fiber for the purpose of communication,
tenuation in the optical fiber means a power loss for reasons other than failure to achieve ing |
internal reflection initially. The following discussion explores these other reasons. 4

Macrobending loss One of the most important advantages of today’s optical fiber is its flefe
bility. Just imagine for a moment that you are holding a glass rod that conducts light perfectlyi§
is rigid. Can you use that rod for communications? Certainly not because you’d have to instalf§’
in different environments; therefore, you would have to be able to bend it. That is why real o
cal communications was born with the advent of optical fibers which allow installers to b
cable as necessary. How much this flexible strand can be bent is our next consideration. 2

Figure 3.5 shows two conflicting situations: (1) The beam forms a critical propagaig
angle with the fiber’s central axis at the straightened, or flat, part of the fiber. (2) But the sa

. you don’t need to
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beam forms a propagation angle that is more than critical when it strikes the boundary of theb

fiber. The result is failure to achieve total internal reflection in the bent fiber, which means g

some portion of the beam is escaping from the core of the fiber. Hence, the power of the light&
riving at its destination will be less than the power of the light emitted into the fiber from ali
source. In other words, bending an optical fiber introduces a loss in light power, or attenuati

This is one of the major causes of the total attenuation that light experiences while propagatf ¥+

through an optical fiber.
At this point you’re no doubt wondering how the problem can be overcome. Manufacturg.
of optical fiber have learned how to reduce a fiber’s bending sensitivity by designing refractig

index profiles. Unfortunately, improvement in bending sensitivity can be achieved only at the ‘ e

pense of the degradation of a fiber’s other parameters. This is why manufacturers inform
what bending loss can be induced at a certain bending radius. For example, one turn at a 32-1
diameter mandrel causes a 0.5-dB (approximately 11%) bending loss for one popular type of fib
Sometimes manufacturers include the minimal bending radius in their data sheets.

Thus, we can say that there is no straightforward method to eliminate this cause of attef

ation. The only thing we can do about it is to be cautious when bending an optical fiber.

Bending can change not only the optical properties but also the mechanical characteris'f oi

of optical fibers. To prevent this, installers and users have to take precautions in bending fibeg

The rules of thumb regarding minimum bending radius are these: A bending radius should§ :

more than 150 times the cladding diameter of the fiber for long-term applications and more
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How to Make Bending Loss Work for Us attenuator, you can easily control attenuation quantitatively
by controlling the number of turns the fiber makes around
Paradoxically, bending loss has a positive side. Sometimes ~ a given bending radius.
we need to introduce well-controlled attenuation in a Another positive application is to use bent fiber as a
fiber-optic communications link. Specific passive compo- mode filter—a device that reduces the number of modes in a
nents, called attenuators, actually do this job for us. One fiber. (Modes are taken up in the following section.)
type of attenuator is based on the phenomenon of bending A fusion splicer (see Chapter 8) uses bending losses to
loss. Its advantage is that you need only make several control splicing quality. An example of one more positive
tums of the fiber that you are using for transmission, so  use of the bending effect is through a device called the fiber
you don’t need to introduce external components to the identifier. This measuring instrument bends an optical fiber
fiber component. (As we will see, introducing external slightly and uses escaping light to control the data traffic
components always presents problems.) With this type of ~ within the fiber. (See Chapter 8.)

100 times the cladding diameter for short-term applications. Since the cladding diameter for sil-
ica fiber is usually 125 um, we get the numbers 19 mm and 13 mm, respectively. But remember,
bending fiber under these radii will damage it.

Microbending loss The type of loss we discussed above is called macrobending loss, since it
is caused by bending the entire optical fiber. Another type of loss—microbending loss—is also
caused by failure to achieve the condition of total internal reflection Figure 3.6 shows what this
type of loss looks like in an optical fiber.

Some imperfections in the geometry of the core-cladding interface might result in micro-
convexity, or microdent, in that area. Although light travels along the straight segment of a fiber,
the beam meets these imperfections and changes its direction. The beam, which initially travels
at the critical propagation angle, after being reflected at these imperfection points, will change
the angle of propagation. The result is that the condition of total internal reflection is not attained
and portions of the beam will be refracted; that is, they will leak out of the core. This is the mech-
anism of microbending loss.

Now we can give formal definitions to these types of loss: Macrobending is loss caused by
the curvature of the entire fiber axis. Microbending is loss caused by microdeformations of the
fiber axis. To find the connection between the given definitions and the above explanations, we
need to realize that the fiber’s centerline, or axis, is the imaginary line. In reality, this line is de-
termined by the core-cladding geometry. This is why microdeformations of the fiber axis are mi-
crodeformations of the core-cladding boundary, as Figure 3.6 shows.

Fiber-optic users can do nothing to overcome microbending loss except ask manufacturers
to improve the quality of their optical fibers. Fortunately, the fiber-manufacturing process is so

N
' | n, cladding

n, cladding

Figure 3.6 Microbending loss. N~—




